ON THE REACTION OF SUPEROXIDE WITH DMPO/'OOH

GARRY R. BUETTNER

ESR Center, EMRB 58, The University of Iowa, Iowa City, IA 52242 USA

A kinetic model has been used to estimate the rate constant for the reaction of superoxide (O_2^-/OOH) with the superoxide spin adduct of 5,5-dimethylpyrroline-N-oxide, DMPO/OOH. This rate constant is estimated to be 4.9 (\pm 2.2) × 10⁶ M⁻¹ s⁻¹, pH 7.4 and 25°C.

KEY WORDS: Spin trapping, 5,5-dimethylpyrroline-N-oxide, superoxide, free radical.

ABBREVIATIONS: DETAPAC, diethylenetriaminepentaacetic acid; DMPO, 5,5-dimethylpyrroline-Noxide; 3-CP, 3-carboxy-proxyl; OXANO, 2-ethyl-2,5,5-trimethyl-3-oxazolidinoxyl; OXANOH, 2-ethyl-1hydroxy-2,5,5-trimethyl-3-oxazolidine; X.O., xanthine oxidase.

INTRODUCTION

Superoxide* reacts slowly with DMPO at neutral pH ($k^{obs} = 30 M^{-1} s^{-1}$ at pH 7.4¹) producing a spin adduct, DMPO/'OOH, that decays by a first-order process, and is relatively short-lived ($t_{1/2} = 50 s$ at pH 7.4, 25°C²). It has recently been shown that the reaction of O_2^- with DMPO/'OH and DMPO/'CH₃ may be a significant process and should be considered when interpreting spin trapping data.^{3.4} In general, it was found that 5-membered ring nitroxides react with superoxide to produce diamagnetic products. Thus, it is reasonable to suspect that superoxide will react with DMPO/'OOH. However, the short lifetime of DMPO/'OOH precludes a simple direct determination of the rate constant for the reaction:

 O_2^- + DMPO/ OOH \rightarrow products.

However, by: 1) determining the rate of production of superoxide in a superoxidegenerating system; 2) determining the steady-state concentration of DMPO/ OOH; and 3) using an appropriate kinetic model, I have estimated the rate constant for this reaction.

MATERIALS AND METHODS

Xanthine oxidase, hypoxanthine, cytochrome c, 3-carboxy-proxyl, and DMPO were from Sigma. DMPO was purified with charcoal² and its concentration determined using $\varepsilon_{228} = 7.8 \times 10^3 \,\text{M}^{-1} \,\text{cm}^{-1}$ (G.R. Buettner, unpublished). Adventitious metals were removed from the buffer with chelating resin (sodium form, dry mesh 50-100, from Sigma, St. Louis, MO). In the demetalled buffer, the loss of ascorbate was 0.3% or less in the standard 15 minute test,⁵ indicating effective removal of catalytic metals.

^{*}In this paper, I use superoxide (or O_2^-) to represent the equilibrium mixture of O_2^- and 'OOH.

The rate of production of superoxide in a xanthine oxidase system was determined as outlined by Fridovich.⁶ Briefly, the change in absorbance of cytochrome $c(\Delta \epsilon_{5N0} = 2.1 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1})$ was followed in a system containing 0.5 mM hypoxanthine, 0.1 mM cytochrome c, 50 μ M DETAPAC, and xanthine oxidase (≈ 0.25 -20 mU/ml) in 50 mM phospate buffer, pH 7.4.

The spin trapping incubations used to determine [DMPO/OOH]_{ss} contained 0.10 M DMPO, 0.5 mM hypoxanthine, 50 μ M DETAPAC, and varying amounts of X.O. such that the rate of O_2^- production varied from 9–71 nMs⁻¹. These X.O. concentrations produced a constant rate of superoxide production in the time range of 3–8 minutes after the introduction of X.O. and an apparent steady-state concentration of DMPO/OOH as determined by repetative scans of the high field doublet of

FIGURI: 1 Top: The superoxide spin adduct spectrum of DMPO produced by a solution of 0.1 mM xanthine, $150 \,\mu\text{M}$ DETAPAC, 70 mM DMPO and $\approx 12 \,\text{mU/ml}$ of X.O. in 50 mM phosphate buffer, pH 7.8. Instrument settings were: power, 20 mW; scan rate 25 G min⁻¹; modulation amplitude, 0.3 G, time constant 0.5 s. *Bottom*: Simulation of DMPO/OOH spectrum assuming two species are present at equal population. The parameters used were: $a_N^1 = 14.25 \,\text{G}$, $a_H^1 = 12.45 \,\text{G}$ and $\Delta H_{pp}^1 = 0.96 \,\text{G}$, $a_N^2 = 14.25 \,\text{G}$, $a_H^2 = 10.10 \,\text{G}$, and $\Delta H_{pp}^2 = 1.11 \,\text{G}$. A 50% Lorentzian-50% Gaussian shape function was used.

RIGHTSLINKA)

DMPO/OOH. (The high field doublet was chosen because it is least affected by the DMPO/OH signal that is also present.)

The determination of the concentration was accomplished by using 3-carboxyproxyl as a standard. Because there are many factors that affect ESR signal area measurements,⁷ the 3-CP standard and DMPO/OOH experimental spectra were obtained using identical instrument settings, except for receiver gain, and identical physical arrangement of the samples in the cavity: Linearity of the receiver gain was verified. Double integration of the spectra was accomplished with the aid of the free radical simulation program of Oehler and Janzen.⁸ The relative area for each species was found by simulation of the midfield line of 3-CP and the high field doublet of DMPO/OOH. The 3-CP lineshape was simulated using Δ Hpp = 1.275 G and a 70% Gaussian-30% Lorentzian shape function. The high field doublet of DMPO/OOH was simulated using a^H = 1.15 G, Δ Hpp = 1.11 G for the low field component and Δ Hpp = 0.96 G for the high field component. For each component a 50% Gaussian-50% Lorentzian shape function was used.

The DMPO/OOH ESR spectrum has an asymmetry that traditional simulation efforts do not reproduce. However, the asymmetrical DMPO/OOH spectrum can be reproduced when two species of equal population, but different line widths, are used. An excellent fit is obtained if for species 1, $a_N^1 = 14.25$ G, $a_H^1 = 12.45$ G and $\Delta H_{pp}^i = 0.96$ G for species 2, $a_N^2 = 14.25$ G, $a_H^2 = 10.10$ G and $\Delta H_{pp}^2 = 1.11$ G. See figure 1. These parameters showed that for DMPO/OOH and 3-CP lines of equal height, the relative area for the two species is: (area DMPO/OOH)/(area 3-CP) = 2.9. This information allows the calculation of the DMPO/OOH concentration from ESR signal height measurements using 3-CP as a standard. ESR spectra were recorded using a Varian E-4 system.

RESULTS AND DISCUSSION

To estimate the rate of the reaction of superoxide with DMPO the following system of kinetic equations was used:

O_2 + hypoxanthine $\xrightarrow{x.0.} O_2^-$ + other products	(1)
rate, measured with cytochrome c ⁵	

$$O_{2}^{-} + O_{2}^{-} + 2H^{+} \longrightarrow O_{2} + H_{2}O_{2}$$

$$k_{2}^{obs} = 2.4 \times 10^{5} \text{ M}^{-1} \text{ s}^{-1}; \text{ pH } 7.4^{9}$$
(2)

$$O_2^- + DMPO + H^+ \longrightarrow DMPO/OOH$$
 (3)
 $k_3^{obs} = 30 M^{-1} s^{-1}; pH 7.4^1$

DMPO/OOH
$$\longrightarrow$$
 products (4)
 $k_4^{obs} = 1.4 \times 10^{-2} \text{ s}^{-1}; \text{ pH } 7.4^{2^{\bullet\bullet}}$

 $DMPO/OOH + O_2^- \longrightarrow \text{ products}$ $k_5^{obs} = ?$ (5)

RIGHTSLINK()

^{**}It has been reported the DMPO/ OOH decomposes with a half-life of 8 minutes.¹⁰ However, this claim could not be substantiated using the riboflavin-DETAPAC system;² rather, at pH 7.4 I found a first-order half-life of 50 s, as previously reported.²

rate ₁ /nMs ⁻¹	[DMPO/`OOH] _{ss} /nM	$k_{s}/10^{6} M^{-1} s^{-1}$
9.1	212	7.2
13.8	285	5.8
21.2	357	5.2
40	590	3.4
71	765	2.9
	$k_s = 4.9(\pm 2.2) \times 10^6 M^{-1} s^{-1}$	

TABLE I

The data of columns 1 and 2 represent the median of at least three determinations.

Use of the steady state assumption that $d[O_2^-]/dt = 0$ and d[DMPO/OOH]/dt = 0 allows an exact solution for the unknown rate constant, k_5 .

As seen in Table 1, the second-order rate constant determined with this kinetic model is $\sim 5 \times 10^6 \,\text{M}^{-1} \,\text{s}^{-1}$. This high rate constant implies that DMPO/OOH can compete effectively for O_2^- in the typical superoxide spin trapping experiment that uses DMPO(0.1 M). For example, the $[O_2^-]_{ss}$ in the experiment where rate₁ = 21.2 nM s⁻¹ was calculated to be 4.4 nM. Thus, at pH 7.4 rate₃ = 13.2 nM s⁻¹ while rate₅ = 8.2 nM s⁻¹ and rate₄ = 4.9 nM s⁻¹, i.e., the loss of DMPO/OOH due to self-decay is only one half that due to the superoxide-induced decay. That rate₅ is greater than rate₄ accounts for the low levels of DMPO/OOH seen in spin trapping experiments.

If in this kinetic model k_5 were zero, then

$$k_3[DMPO][O_2^+]_{ss} = k_4 [DMPO/OOH]_{ss}$$

After calculating $[O_2^-]_{ss}$ (7.1 nM) we have $[DMPO/OOH]_{ss} = 1.5 \,\mu\text{M}$, but I only observed 0.36 μ M DMPO/OOH. Therefore, this value of k₅ accounts for the less than predicted concentration of DMPO/OOH seen in spin trapping experiments.

These results point to the difficulty in attempting to do quantitative work by observing DMPO/OOH. In addition, it may be an experimental advantage in some experiments to arrange a low rate of superoxide generation so that reaction (5) can be minimized. Then, use of a slower scan rate with longer time constant or signal averaging can be employed because oxygen depletion will be delayed significantly.

A close examination of the results presented in Table 1 reveals that as the rate of superoxide generation increases, k_5^{obs} decreases. This trend suggests that the kinetic model may not be complete. The lower values of k_5^{obs} at higher O_2^- fluxes, i.e., high X.O. concentrations, suggest that a relative increase in DMPO/OOH concentration occurs. This would not be the case if X.O. were reducing DMPO/OOH. (Samuni *et al.*⁴ found no evidence that X.O. directly destroys DMPO/OH.) A relative increase in [DMPO/OOHJ]_{ss} would occur if the diamagnetic products of reaction (5) could be reoxidized to DMPO/OOH by superoxide, i.e.,

$$[O_{2}]_{1s} = \frac{2k_{3}[DMPO] - ((2k_{3}[DMPO])^{2} - 4(-2k_{2})(rate_{1} + k_{4}[DMPO/OOH]))^{1/2}}{2(-2k_{3})}$$

and

$$k_{5} = \frac{k_{4}[DMPO/OOH] - k_{3}[DMPO][O_{2}^{-}]}{-[DMPO/OOH][O_{7}^{-}]}$$

RIGHTSLINK()

products₅
$$\frac{\text{slow}}{k_{6} \text{ is small}}$$
 irreversible ESR-silent products (6)

products₅ +
$$O_2^-$$
 + 2H⁺ $\xrightarrow{\text{fast}}_{k_7 \text{ is large}}$ DMPO/OOH + H_2O_2 (7)

In essence, reaction (7) could occur if the initial ESR-silent products of reaction (5) could be efficiently reoxidized by O_2^- /OOH. This possibility has precedent. It has recently been demonstrated that the nitroxide/hydroxylamine couple of OXANO/OXANOH undergoes a reaction sequence parallel to reactions (5) and (7) above.¹¹ However, Samuni *et al.*⁴ were not able to reoxidize the ESR-silent product of DMPO/OH + O_2^- with either ferricyanide or $H_2O_2/Cu(II)$. If reactions (6) and (7) were to be included in the reaction scheme, then gathering the experimental data for an exact solution becomes a problem. If reactions (6) and (7) are operative, then the value of k_5 at pH 7.4 is probably $\approx 10^7 M^{-1} s^{-1}$. Nonetheless, even with the kinetic model used to arrive at k_5^{obs} , the value of $5 \times 10^6 M^{-1} s^{-1}$ is a very useful number that can be used as a guideline for researchers to help interpret spin trapping data dealing with DMPO/OOH.

References

- Finkelstein, E., Rosen, G.M. and Rauckman, E.J. Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. J. Am. Chem. Soc., 102, 4994-4999, (1980).
- Buettner, G.R. and Oberley, L.W. Considerations in the spin trapping of superoxide and hydroxyl radical in aqueous systems using 5,5-dimethyl-1-pyrroline-1-oxide. *Biochem. Biophys. Res. Commun.*, 83, 69-74, (1978).
- Samuni, A., Black, C.D.V., Krishna, C.M., Malech, H.L. Bernstein, E.F. and Russo, A. Hydroxyl radical production by stimulated neutrophils reappraised. J. Biol. Chem., 263, 13797-13801, (1988).
- Samuni, A., Krishna, C.M., Riesz, P., Finkelstein, E. and Russo, A. Superoxide reaction with nitroxide spin-adducts. Free Rad. Biol. Med., 6, 141-148, (1989).
- 5. Buettner, G.R. In the absence of catalytic metals ascorbate does not autoxidize at pH 7: ascorbate as a test for catalytic metals. J. Biochem. Biophys. Meth., 16, 27-40, (1988).
- Fridovich, I. Cytochrome c. In Handbood of Methods for Oxygen Radical Research (ed. R.A. Greenwald), CRC Press, Boca Raton, pp 121-122, (1985).
- 7. Eaton, S.S. and Eaton, G.R. Signal area measurements in EPR. Bull. Mag. Reson., 1, 130-138, (1980).
- Ochler, U.M. and Janzen, E.G., Simulation of isotropic electron spin resonance spectra: a transportable basic program. Can. J. Chem., 60, 1542-1548, (1982).
- Bielski, B.H.J., Cabelli, D.E. and Arudi, R.L., Reactivity of HO₂/O₂⁻ radicals in aqueous solution. J Phys Chem. Ref. Data., 14, 1041-1100, (1985).
- 10. Turner, M.J., III and Rosen, G.M., Spin trapping of superoxide and hydroxyl radicals with substituted pyrroline 1-oxides. J. Med. Chem., 29, 2439-2444, (1986).
- Samuni, A., Krishna, C.M., Riesz, P., Finkelstein, E. and Russo, A. A novel metal-free low molecular weight superoxide dismutase mimic. J. Biol. Chem., 263, 17921-17924, (1988).

Accepted by Prof. E.G. Janzen

15